一、二f英的生成机理与控制方法
一般认为,有氯和金属存在条件下的有机物燃烧均会产生二f英。统计发现,城市生活垃圾焚烧产生的二量最多,其次是有害废弃物焚烧和医院废弃物焚烧等。1990年,日本/二0类发生总量为3940~8405 g TEQ/Y,主要发生源如表1所示。
城市生活垃圾中含有20%~50%的有机物,这些有机物中大多含有碳、氢、氧3种元素。城市生活垃圾分析结果表明,垃圾中氯元素的来源分为两类:一类是有机氯化物如聚氯乙烯塑料(PVC)、氯苯和氯酚等,主要分布在废塑料、废纸、废木料以及草木中;另一类是无机的氯化物如氯化钠、氯化镁等,主要分布在厨余、灰土等无机组分中。这些都是构成垃圾焚烧产生二f英的最基本要素。一般认为,垃圾焚烧产生二f英主要有以下两个途径:(1)炉内生成:在燃烧过程中,若缺氧燃烧,会生成二f英的前驱物,这些前驱物与垃圾中的氯化物、O2、O离子进行复杂化学反应,生成二f英类物质;(2)尾部再度合成:不完全燃烧反应所生成的二f英的前驱物以及垃圾中未燃尽的环烃物质,在烟尘中的Cu、Ni、Fe等金属粒子催化作用下,与烟气中的氯化物和发生反应,生成二f英类物质,催化反应温度在300℃左右时,易生成二f英类物质。
采用/3T0(turbulence、temperature、time)技术,一般温度>850e,停留时间>2s,采用二次风,使燃烧物与空气充分搅拌混合,造成富氧燃烧状态,减少二前驱物的生成。日本某垃圾焚烧厂采用/3T0技术,使焚烧炉出口PCDD/Fs的排放量从33.1 ng/m3下降到6.1 ng/m3,效果十分明显。也可采用分段燃烧,一段燃烧处于缺氧还原区,所产生的二f英类物质在二次燃烧室内彻底氧化分解,二次燃烧室内温度较高,通常在1000e以上,有研究表明,二f英去除率可达99.9999%。另外,有报道显示,采用流化床燃烧方式,由于能够很好地满足/3T0技术,可使二f英排放量减少98%。
在实现完全燃烧降低二f英的前驱物合成后,下面要解决的是残存的前驱物重新合成和生成的二f英捕集的问题。通常采用降低排烟温度,使气相中的二f英转移到灰相中,然后使用布袋除尘器将二f英除去。实验数据已证明,降低温度在抑制二f英类物质的重新生成和提高吸附捕集效率两方面均很有效。控制袋式除尘器的入口温度在150e以下,由于合成二f英类物质的催化反应温度为300e左右,因此其前驱物不可能在布袋式除尘器中催化合成二f英物质。布袋除尘器在工作时,在滤布表面会形成颗粒层,废气中的二f英类物质通过该层被吸附脱除,被吸附的二f英类物质排至灰渣处理系统中。与袋式除尘器不同,若静电除尘器的入口温度在300℃左右,残存的前驱物重新合成二f英。所以现在一般要求采用布袋除尘器。该项技术已应用于实际设备,取得显著效果。当排烟中微小粒子较少时,该处理方法效果下降,这时可采用喷射中和酸性气体成分(HCl、SOx)的熟石灰或石灰浆,与布袋除尘系统联合使用,该系统去除二十分有效。也可在布袋除尘器前喷射活性炭粉末,它具有较大的比表面积,吸附能力较强,在排烟温度
研究表明,去除烟气中的二f英可以使用能够同时使二和NOx分解的触媒,触媒材料为V2O5/TiO2。当烟气入口温度在200e左右时,二f英去除率高达90%以上。最近的试验结果表明,在烟温410℃和670℃之间喷NH3、SO2、二甲胺、(CH3)NH和甲硫醇(CH3SH)等物质,颗粒相二f英的去除率可达98%,二f英总去除率达42%~78%。
通过改进燃烧和废气处理技术,最大限度减少排入大气的二f英类物质的量,被吸附的二f英类物质随颗粒一起进入灰渣系统中,所以灰渣中的二f英的量比大气中的二f英的量多得多。熔融处理技术是通常的灰渣处理技术,将灰渣送入温度为1200℃以上的熔化炉内熔化,灰渣中的二类物质在高温下,被迅速分解和燃烧。实验证明,通过灰渣熔融处理过后,PCDD/PCDF的分解率达99.77%。因此,灰渣熔融处理技术是一种较为有效的灰渣处理手段。
二、 HCl的生成机理与控制方法
常温下,HCl为无色气体,有刺激性气味,极易溶于水而形成盐酸。HCl对人体的危害很大,对于植物,HCl会导致叶子褪绿,进而出现变黄、棕、红至黑色的坏死现象。HCl对余热锅炉会造成过热器高温腐蚀和尾部受热面的低温腐蚀,例如深圳市垃圾焚烧炉过热器曾经只运行100 d就被HCl高温腐蚀损毁。
半干式系统:石灰浆在喷雾吸收反应塔内被雾化,雾滴与热烟气相接触,经过复杂的传热传质反应过程,HCl被脱除,脱除率较干式系统高,但成本也相应提高。
湿式系统:烟气先经过布袋除尘器或静电除尘器后再进入湿式洗涤塔,脱除HCl的反应同式(4)。该系统HCl脱除率最高,但成本也最高。烟气悬浮吸收系统(gas suspension absorber,GSA)是气态污染物净化设备,是以循环流化床技术为基础的烟气净化装置,广泛应用于垃圾焚烧炉气态污染物的控制。将未处理的焚烧烟气引入文丘里管,借助于文氏管内的喷嘴使Ca(OH)2干粉和水或石灰浆雾化后喷注于烟气中,在气体高度紊流状态下,使气固混合达到均匀状态后进入循环流化床内。GSA内/固-气0比的平均范围约为0.5~1kg/m3,大量的吸收剂固体粒子在GSA内处于/流化0状态,与烟气中的酸性气体发生化学反应,净化后的烟气夹带着固体粒子进入旋风分离器,分离下来的吸收剂通过给料装置回送至反应塔(GSA)内,实现物料循环。该系统造价是湿式系统的60%。该系统用于丹麦Kara 4号垃圾焚烧炉的测量结果见表2所示。表2 GAS用于丹麦Kara 4号垃圾焚烧炉的测量结果
三、细颗粒和重金属污染物的控制
垃圾破碎和燃烧过程中会产生大量的细颗粒,颗粒的粒径大小是决定其毒性作用的主要因素。实验表明,小于1.1Lm的颗粒很容易进入肺泡,被吸附在细颗粒上的有害物质会被人体吸收到血液中,颗粒粒径愈小,致突变活性愈高。细颗粒中含重金属元素包括Hg、Pd、Cd、Cr、Cu、Ni、Zn、Mn等,在这些污染物中含有为数可观的致癌、致突变、致畸化合物和若干有毒有害化学成分。对人体危害大的元素主要集中在小于3Lm的颗粒物中。所以,只要除掉烟气中的细颗粒,就能减少重金属的危害。
国内外对垃圾焚烧重金属污染的控制研究大致可分焚烧前控制、焚烧过程中控制以及焚烧后控制三方面。
焚烧前控制:将垃圾分类分拣,将重金属浓度含量较高的废旧电池及电器、杂质等从原生垃圾中分拣出,可以大大减少垃圾焚烧产物中汞、铅和镉的含量。
焚烧过程中控制:主要是采用控制空气燃烧法(CAO),即将垃圾在600~650e左右的一燃室热解、气化和固定碳燃烧,这样重金属不会升华,而保留在灰中。在二燃室中可燃气体在高温下燃尽,从而在燃烧过程中降低重金属的排放。
焚烧后控制:通常去除重金属污染的方法有:
四、其他污染物(SOx、NOx)的生成与控制
SOx通常是由垃圾中含硫化物焚烧氧化时产生,另外,一些垃圾焚烧炉需要燃煤为辅助燃料以稳定燃烧,这也造成较多的SOx产生。SOx大部分是SO2,对大气污染危害较大。燃烧尾气中的这些有害气体通常采用碱性介质吸收法,最常用的吸收剂为消石灰,常用的方法有湿法、干法和半干法三种,如HCl烟气处理装置相同。NOx主要来自垃圾中的有机氮的氧化。
一般NO在NOx中所占的比例为95%以上。目前,可采用多种措施来减少NOx的排放,这些措施主要分为两类:
五、结论